
Building reproducible
analytical pipelines with

Python

Bruno Rodrigues

2024-08-12

Table of contents

Welcome! 1
How using a few ideas from software engineering can

help data scientists, analysts and researchers
write reliable code 1

Preface 5

1 Introduction 9
1.1 Who is this book for? 9
1.2 What is the aim of this book? 10
1.3 Prerequisites . 12
1.4 What actually is reproducibility? 13

1.4.1 Using open-source tools to build a RAP
is a hard requirement 14

1.4.2 There are hidden dependencies that can
hinder the reproducibility of a project . . 16

1.4.3 The requirements of a RAP 17
1.5 Are there different types of reproducibility? . . . 19

2 Setting up a development environment 25
2.1 Why is installing Python such a hard problem? . 25
2.2 Creating a project-specific development environ-

ment . 27
2.3 One last thing . 33
2.4 A high-level description of how to set up a project 34

iii

Table of contents

3 Project start 37
3.1 Housing in Luxembourg 37
3.2 Saving trapped data from Excel 42
3.3 Analysing the data 64
3.4 Your project is not done 66

3.4.1 How easy would it be for someone else to
rerun the analysis? 66

3.4.2 How easy would it be to update the project? 67
3.4.3 How easy would it be to reuse this code

for another project? 67
3.4.4 What guarantee do we have that the out-

put is stable through time? 68
3.5 Conclusion . 69

References 71

iv

Welcome!

How using a few ideas from software
engineering can help data scientists,
analysts and researchers write reliable
code

This is the Python edition of the book “Building reproducible an-
alytical pipelines”, and it’s a work-in-progress. If you’re looking
for the R version, visit this link.

Data scientists, statisticians, analysts, researchers, and many
other professionals write a lot of code.

Not only do they write a lot of code, but they must also read
and review a lot of code as well. They either work in teams and
need to review each other’s code, or need to be able to repro-
duce results from past projects, be it for peer review or auditing
purposes. And yet, they never, or very rarely, get taught the
tools and techniques that would make the process of writing,
collaborating, reviewing and reproducing projects possible.

Which is truly unfortunate because software engineers face the
same challenges and solved them decades ago.

The aim of this book is to teach you how to use some of the best
practices from software engineering and DevOps to make your

1

https://www.raps-with-r.dev

Welcome!

projects robust, reliable and reproducible. It doesn’t matter if
you work alone, in a small or in a big team. It doesn’t matter
if your work gets (peer-)reviewed or audited: the techniques
presented in this book will make your projects more reliable
and save you a lot of frustration!

As someone whose primary job is analysing data, you might
think that you are not a developer. It seems as if developers are
these genius types that write extremely high-quality code and
create these super useful packages. The truth is that you are a
developer as well. It’s just that your focus is on writing code
for your purposes to get your analyses going instead of writing
code for others. Or at least, that’s what you think. Because in
others, your team-mates are included. Reviewers and auditors
are included. Any people that will read your code are included,
and there will be people that will read your code. At the very
least future you will read your code. By learning how to set up
projects and write code in a way that future you will understand
and not want to murder you, you will actually work towards
improving the quality of your work, naturally.

The book can be read for free on https://b-rodrigues.github.io/
raps_with_py/ and you’ll be able buy a DRM-free Epub or
PDF on Leanpub1 once there’s more content.

This is the Python edition of my book titled Building repro-
ducible analytical pipelines with R2. This means that a lot of
text is copied over, but the all of the code and concepts are
completely adapted to the Python programming language. This
book is also shorter than the R version. Here’s the topics that I
will cover:

• Dependency management with pipenv;
1https://leanpub.com/
2https://raps-with-r.dev

2

https://b-rodrigues.github.io/raps_with_py/
https://b-rodrigues.github.io/raps_with_py/
https://leanpub.com/
https://raps-with-r.dev
https://raps-with-r.dev

How using a few ideas from software engineering can help data scientists, analysts and researchers write reliable code

• Some thoughts on functional programming with Python;
• Unit and assertive testing;
• Build automation with ploomber;
• Literate programming with Quarto;
• Reproducible environments with Docker;
• Continuous integration and delivery.

While this is not a book for beginners (you really should be
familiar with Python before reading this), I will not assume that
you have any knowledge of the tools discussed. But be warned,
this book will require you to take the time to read it, and then
type on your computer. Type a lot.

I hope that you will enjoy reading this book and applying the
ideas in your day-to-day, ideas which hopefully should improve
the reliability, traceability and reproducibility of your code. You
can read this book for free on TO UPDATE

If you want to get to know me better, read my bio3.

You can submit issues, PRs and ask questions on the book’s
Github repository4.

3https://www.brodrigues.co/about/me/
4https://github.com/b-rodrigues/raps_with_py

3

https://www.brodrigues.co/about/me/
https://github.com/b-rodrigues/raps_with_py

Preface

I don’t like Python. Or rather, don’t like using it to analyze
data. I believe that certain design choices were made that make
Python a subpar language for analyzing data. That being said,
Python is currently the most popular general purpose program-
ming language, and also the most popular language to analyze
data, especially in machine learning and AI. As such, it is a good
idea to at least know your way around it even if, like me, you
prefer using the R programming language.

I state that I don’t like Python because I want to make some-
thing very clear, right from the start. I am not an expert in
Python. I know enough to get things done, but it is not a lan-
guage that I know well. I consider myself an expert in R, but
definitely not in Python. So why write a book on Python in
that case? Well, in truth, this is not a book about Python.

This book is about building reproducible pipelines. And in order
to build reproducible pipelines, you need to apply certain general
ideas. This book will discuss these ideas, and illustrate them
using the Python programming language. I wrote such a book
already: you can read it here5. The book was well received: lots
of people contacted me to thank me for having written it, I was
invited to give talks several times on the book already, give some
workshops and some people are already asking me for a second
edition. I thought it would be an interesting challenge to write

5https://www.raps-with-r.dev

5

https://www.raps-with-r.dev

Preface

a Python edition. It would be a good excuse to dive back into
Python after having barely touched it since my Phd days, more
than 10 years ago, where I used it alongside R for a project. It
is also a good opportunity to see what is currently available in
the Python programming language, and if it would be possible
to reproduce the way I work with R.

There are currently some interesting packages available for
Python that are quite close to some available for R. But R and
Python have some very fundamental differences in their design
that make using Python feel awkward if you’re used to R,
especially if take full advantage of R’s functional programming
features. But it’s not just these design choices that differentiate
both languages, there are also differences in culture, in how
people use them. For example, notebooks are very popular in
the Python world, but it’s quite rare to see someone share R
code through a notebook. In general, R users tend to write
code as plain-text scripts or in Markdown using Rmarkdown or
Quarto. Throughout this book, I will be writing Python with
a heavy R accent, mainly for two reasons: first, because I’m
fluent in R, but not in Python, as I’ve stated above. Second,
because I also think that some of R’s idioms actually make it
more readable than equivalent Python code, and thus we can
make Python more readable if we make it look more like R.

If the previous sentence didn’t scare you into continuing and you
are actually curious to see what I mean, then read on, you’re in
the perfect state of mind to approach this book!

Let me finish this section by talking a little bit about the history
of these books (the original R edition and this one). It all started
when a former colleague of mine contacted me in the summer of
2022 to ask me if I was interested in teaching a course for the
Data Science Master degree at the University of Luxembourg.
Long story short, I’ve decide to teach students how to set up

6

Preface

data science projects in a way that they’re reproducible. I wrote
my course notes into a freely available bookdown6 that I used
for teaching. When I started compiling my notes, I discovered
the concept of Reproducible Analytical Pipelines as developed by
the Office for National Statistics7 (henceforth ONS). I found the
name “Reproducible Analytical Pipeline” (henceforth RAP) re-
ally perfect for what I was aiming at. The ONS team responsible
for evangelising RAPs also published a free ebook8 in 2019 al-
ready. Another big source of inspiration is Software Carpentry9

to which I was exposed during my PhD years, around 2014-ish if
memory serves. While working on a project with some German
colleagues from the University of Bonn, the principal investiga-
tor made us work using these concepts to manage the project. I
was really impressed by it, and these ideas and techniques stayed
with me since then. This was also the project where I’ve used
Python.

The bottom line is: the ideas I’m presenting here are nothing
new. It’s just that I took some time to compile them and make
them accessible and interesting (at least I hope so) to users of
the Python programming language, even if I’m not one.

If you have feedback, drop me an email at bruno [at] brodrigues
[dot] co.

Enjoy!

6https://rap4mads.eu/
7https://analysisfunction.civilservice.gov.uk/support/reproducible-

analytical-pipelines/
8https://ukgovdatascience.github.io/rap_companion/
9https://software-carpentry.org/

7

https://rap4mads.eu/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
https://ukgovdatascience.github.io/rap_companion/
https://software-carpentry.org/

1 Introduction

This book will not teach you about machine learning, statistics
or visualisation.

The goal is to teach you a set of tools, practices and project
management techniques that should make your projects easier
to reproduce, replicate and retrace. These tools and techniques
can be used right from the start of your project at a minimal
cost, such that once you’re done with the analysis, you’re also
done with making the project reproducible. Your projects are
going to be reproducible simply because they were engineered,
from the start, to be reproducible.

There are two main ideas in this book that you need to keep in
mind at all times:

• DRY: Don’t Repeat Yourself;
• WIT: Write IT down.

DRY WIT is not only the best type of humour, it is also the
best way to write reproducible analytical pipelines.

1.1 Who is this book for?

This book is for anyone that uses raw data to build any type of
output based on that raw data. This can be a simple quarterly

9

1 Introduction

report for example, in which the data is used for tables and
graphs, or a scientific article for a peer reviewed journal or even
an interactive web application. It doesn’t matter, because the
process is, at its core, always very similar:

• Get the data;
• Clean the data;
• Write code to analyse the data;
• Put the results into the final product.

This book will already assume some familiarity with program-
ming, and in particular the Python programming language. As
I’ve stated in the preface, I’m not a Python expert, but I’m
comfortable enough with the language. In any case, this is not
a book about programming itself, and bar a short discussion
on the merits of the Polars package, I won’t be teaching you
programming.

1.2 What is the aim of this book?

The aim of this book is to make the process of analysing data as
reliable, retraceable, and reproducible as possible, and do this
by design. This means that once you’re done with the analysis,
you’re done. You don’t want to spend time, which you often
don’t have anyways, to rewrite or refactor an analysis and make
it reproducible after the fact. We both know that this is not
going to happen. Once an analysis is done, it’s time to go to
the next analysis. And if you need to rerun an older analysis
(for example, because the data got updated), then you’ll simply
figure it out at that point, right? That’s a problem for future
you, right? Hopefully, future you will remember every quirk of
your code and know which script to run at which point in the

10

1.2 What is the aim of this book?

process, which comments are outdated and can be safely ignored,
what features of the data need to be checked (and when they
need to be checked), and so on… You better hope future you is
a more diligent worker than you!

Going forward, I’m going to refer to a project that is repro-
ducible as a “reproducible analytical pipeline”, or RAP for short.
There are only two ways to make such a RAP; either you are
lucky enough to have someone on the team whose job is to turn
your messy code into a RAP, or you do it yourself. And this
second option is very likely the most common. The issue is, as
stated above, that most of us simply don’t do it. We are always
in the rush to get to the results, and don’t think about mak-
ing the process reproducible. This is because we always think
that making the process reproducible takes time and this time
is better spent working on the analysis itself. But this is a mis-
conception, for two reasons.

The first reason is that employing the techniques that we are
going to discuss in this book won’t actually take much time. As
you will see, they’re not really things that you “add on top of the
analysis”, but will be part of the analysis itself, and they will also
help with managing the project. And some of these techniques
will even save you time (especially testing) and headaches.

The second reason is that an analysis is never, ever, a one-shot.
Only the most simple things, like pulling out a number from
some data base may be a one-shot. And even then, chances are
that once you provide that number, you’ll be asked to pull out a
variation of that number (for example, by disaggregating by one
or several variables). Or maybe you’ll get asked for an update
to that number in six months. So you will learn very quickly to
keep that SQL query in a script somewhere to make sure that
you provide a number that is consistent. But what about more
complex analyses? Is keeping the script enough? Keeping the

11

1 Introduction

script is already a good start of course. The problem is that
very often, there is no script, or not a script for each step of the
analysis.

I’ve seen this play out many times in many different organisa-
tions. It’s that time of the year again, we have to write a report.
10 people are involved, and just gathering the data is already
complicated. Some get their data from Word documents at-
tached to emails, some from a website, some from a report from
another department that is a PDF… I remember a story that a
senior manager at my previous job used to tell us: once, a client
put out a call for a project that involved helping them setting
up a PDF scraper. They periodically needed data from another
department that came in PDFs. The manager asked what was,
at least from our perspective, an obvious question: why can’t
they send you the underlying data from that PDF in a machine
readable format? They had never thought to ask. So my man-
ager went to that department, and talked to the people putting
that PDF together. Their answer? “Well, we could send them
the data in any format they want, but they’ve asked us to send
the tables in a PDF format”.

So the first, and probably most important lesson here is: when
starting to build a RAP, make sure that you talk with all the
people involved.

1.3 Prerequisites

You should be comfortable with the Python programming lan-
guage. This book will assume that you have been using Python
for some projects already, and want to improve not only your
knowledge of the language itself, but also how to successfully

12

1.4 What actually is reproducibility?

manage complex projects. Ideally, you should know about pack-
ages, how to install them, you should have written some func-
tions already, know about loops and have some basic knowledge
of data structures like lists. While this is not a book on visu-
alisation, we will be making some graphs using the plotnine
package, so if you’re familiar with that, that’s good. If not, no
worries, visualisation, data munging or data analysis is not the
point of this book. Chapter 2, Before we start should help you
gauge how easily you will be able to follow this book.

Ideally, you should also not be afraid of not using Graphical User
Interfaces (GUIs). While you can follow along using an IDE like
VS Code, I will not be teaching any features from any program
with a GUI. This is not to make things harder than they should
be (quite the contrary actually) but because interacting graphi-
cally with a program is simply not reproducible. So our aim is
to write code that can be executed non-interactively by a ma-
chine. This is because one necessary condition for a workflow to
be reproducible and get referred to as a RAP, is for the workflow
to be able to be executed by a machine, automatically, without
any human intervention. This is the second lesson of building
RAPs: there should be no human intervention needed to get
the outputs once the RAP is started. If you achieve this, then
your workflow is likely reproducible, or can at least be made
reproducible much more easily than if it requires some special
manipulation by a human somewhere in the loop.

1.4 What actually is reproducibility?

A reproducible project means that this project can be rerun
by anyone at 0 (or very minimal) cost. But there are different
levels of reproducibility, and I will discuss this in the next section.

13

1 Introduction

Let’s first discuss some requirements that a project must have
to be considered a RAP.

1.4.1 Using open-source tools to build a RAP is
a hard requirement

Open source is a hard requirement for reproducibility.

No ifs nor buts. And I’m not only talking about the code
you typed for your research paper/report/analysis. I’m talk-
ing about the whole ecosystem that you used to type your code
and build the workflow.

Is your code open? That’s good. Or is it at least available to
other people from your organisation, in a way that they could
re-execute it if needed? Good.

But is it code written in a proprietary program, like STATA,
SAS or MATLAB? Then your project is not reproducible. It
doesn’t matter if this code is well documented and written and
available on a version control system (internally to your company
or open to the public). This project is just not reproducible.
Why?

Because on a long enough time horizon, there is no way to re-
execute your code with the exact same version of the proprietary
programming language and on the exact same version of the
operating system that was used at the time the project was
developed. As I’m writing these lines, MATLAB, for example,
is at version R2022b. And buying an older version may not
be simple. I’m sure if you contact their sales department they
might be able to sell you an older version. Maybe you can even
simply re-download older versions that you’ve already bought
from their website. But maybe it’s not that simple. Or maybe

14

1.4 What actually is reproducibility?

they won’t offer this option anymore in the future, who knows?
In any case, if you google “purchase old version of Matlab” you
will see that many researchers and engineers have this need.

Figure 1.1: Wanting to run older versions of analytics software
is a recurrent need.

And if you’re running old code written for version, say, R2008a,
there’s no guarantee that it will produce the exact same results
on version 2022b. And let’s not even mention the toolboxes (if
you’re not familiar with MATLAB’s toolboxes, they’re the equiv-
alent of packages or libraries in other programming languages).
These evolve as well, and there’s no guarantee that you can
purchase older versions of said toolboxes. And it’s likely that

15

1 Introduction

newer versions of toolboxes cannot even run on older versions of
Matlab.

And let me be clear, what I’m describing here with MATLAB
could also be said for any other proprietary programs still com-
monly (unfortunately) used in research and in statistics (like
STATA, SAS or SPSS). And even if some, or even all, of the
editors of these proprietary tools provide ways to buy and run
older versions of their software, my point is that the fact that you
have to rely on them for this is a barrier to reproducibility, and
there is no guarantee they will provide the option to purchase
older versions forever. Also, who guarantees that the editors of
these tools will be around forever? Or, and that’s more likely,
that they will keep offering a program that you install on your
machine instead of shifting to a subscription based model?

For just $199 a month, you can execute your SAS (or whatever)
scripts on the cloud! Worry about data confidentiality? No
worries, data gets encrypted and stored safely on our secure
servers! Run your analysis from anywhere and don’t worry about
losing your work if your cat knocks over your coffee on your
laptop! And if you purchase the pro licence, for an additional
$100 a month, you can even execute your code in parallel!

Think this is science fiction? Google “SAS cloud” to see SAS’s
cloud based offering.

1.4.2 There are hidden dependencies that can
hinder the reproducibility of a project

Then there’s another problem: let’s suppose you’ve written a
nice, thoroughly tested and documented workflow, and made
it available on Github (and let’s even assume that the data is
available for people to freely download, and that the paper is

16

1.4 What actually is reproducibility?

open access). Or, if you’re working in the private sector, you
did everything above as well, the only difference being that the
workflow is only available to people inside the company instead
of being available freely and publicly online.

Let’s further assume that you’ve used R or Python, or any other
open source programming language. Could this study/analysis
be said to be reproducible? Well, if the analysis ran on a pro-
prietary operating system, then the conclusion is: your project
is not reproducible.

This is because the operating system the code runs on can
also influence the outputs that your pipeline builds. There are
some particularities in operating systems that may make certain
things work differently. Admittedly, this is in practice rarely a
problem, but it does happen1, especially if you’re working with
very high precision floating point arithmetic like you would do
in the financial sector for instance.

Thankfully, there is no need to change operating systems to deal
with this issue, and we will learn how to use Docker to safeguard
against this problem.

1.4.3 The requirements of a RAP

So where does that leave us? Basically, for something to be truly
reproducible, it has to respect the following bullet points:

• Source code must obviously be available and thoroughly
tested and documented (which is why we will be using Git
and Github);

1https://github.com/numpy/numpy/issues/9187

17

https://github.com/numpy/numpy/issues/9187

1 Introduction

• All the dependencies must be easy to find and install (we
are going to deal with this using dependency management
tools);

• To be written with an open source programming language
(nocode tools like Excel are by default non-reproducible
because they can’t be used non-interactively, and which
is why we are going to use the Python programming lan-
guage);

• The project needs to be run on an open source operating
system (thankfully, we can deal with this without having
to install and learn to use a new operating system, thanks
to Docker);

• Data and the paper/report need obviously to be accessible
as well, if not publicly as is the case for research, then
within your company. This means that the concept of
“scripts and/or data available upon request” belongs in
the trash.

Figure 1.2: A real sentence from a real paper published in THE
LANCET Regional Health. How about make the data
available and I won’t scratch your car, how’s that for
a reasonable request?

18

1.5 Are there different types of reproducibility?

1.5 Are there different types of
reproducibility?

Let’s take one step back: we live in the real world, and in the real
world, there are some constraints that are outside of our control.
These constraints can make it impossible to build a true RAP,
so sometimes we need to settle for something that might not be
a true RAP, but a second or even third best thing.

In what follows, let’s assume this: in the discussion below, code
is tested and documented, so let’s only discuss the code running
the pipeline itself.

The worst reproducible pipeline would be something that works,
but only on your machine. This can be simply due to the fact
that you hardcoded paths that only exist on your laptop. Any-
one wanting to rerun the pipeline would need to change the
paths. This is something that needs to be documented in a
README which we assumed was the case, so there’s that. But
maybe this pipeline only runs on your laptop because the com-
putational environment that you’re using is hard to reproduce.
Maybe you use software, even if it’s open source software, that
is not easy to install (anyone that tried to install R packages
on Linux that depend on the {rJava} package know what I’m
talking about).

So a least worse pipeline would be one that could be run
more easily on any similar machine to yours. This could
be achieved by not using hardcoded absolute paths, and by
providing instructions to set up the environment. For example,
in the case of Python, this could be as simple as providing
a requirements.txt file that lists the dependencies of the
project, and which could be easily install using pip:

19

1 Introduction

pip install -r requirements.txt

Doing this ensures that others, or future you, will be able to
install the required packages to reproduce a study. However,
this is not enough, and I will be talking about pipenv to do this
kind of thing instead of pip. In the next chapter I’ll explain
why.

20

1.5 Are there different types of reproducibility?

You should also ensure that people run the same analysis on
the same version of Python that was used to program it. Just
installing the right packages is not enough. The same code can
produce different results on different versions of Python, or not
even work at all. If you’ve been using Python for some time, you
certainly remember the switch from Python 2 to Python 3… and
who knows, the switch to Python 4 might be just as painful!

The take-away message is that counting on the language itself
being stable through time as a sufficient condition for repro-
ducibility is not enough. We have to set up the code in a way
that it actually is reproducible and explicitely deal with versions
of the language itself.

So what does this all mean? This means that reproducibility is
on a continuum, and depending on the constraints you face your
project can be “not very reproducible” to “totally reproducible”.
Let’s consider the following list of anything that can influence
how reproducible your project truly is:

• Version of the programming language used;
• Versions of the packages/libraries of said programming lan-

guage used;
• Operating System, and its version;
• Versions of the underlying system libraries (which often go

hand in hand with OS version, but not necessarily).
• And even the hardware architecture that you run all that

software stack on.

So by “reproducibility is on a continuum”, what I mean is that
you could set up your project in a way that none, one, two, three,
four or all of the preceding items are taken into consideration
when making your project reproducible.

This is not a novel, or new idea. Peng (2011) already discussed
this concept but named it the reproducibility spectrum. In part

21

1 Introduction

2 of this book, I will reintroduce the idea and call it the “repro-
ducibility iceberg”.

Figure 1.3: The reproducibility spectrum from Peng’s 2011 pa-
per.

Let me just finish this introduction by discussing the last item
on the previous list: hardware architecture. You see, Apple has
changed the hardware architecture of their computers recently.
Their new computers don’t use Intel based hardware anymore,
but instead Apple’s own proprietary architecture (Apple Silicon)
based on the ARM specification. And what does that mean con-
cretely? It means that all the binary packages that were built for
Intel based Apple computers cannot run on their new comput-
ers (at least not without a compatibility layer). Which means
that if you have a recent Apple Silicon Macbook and need to
install old packages to rerun a project (and we will learn how
to do this later in the book), these need to be compiled to work
on Apple Silicon first. Now I have read about a compatibility
layer called Rosetta which enables to run binaries compiled for
the Intel architecture on the ARM architecture, and maybe this
works well with older Python and package binaries compiled
for Intel architecture. Maybe, I don’t know. But my point is
that you never know what might come in the future, and thus

22

1.5 Are there different types of reproducibility?

needing to be able to compile from source is important, because
compiling from source is what requires the least amount of de-
pendencies that are outside of your control. Relying on bina-
ries is not future-proof (and which is again, another reason why
open-source tools are a hard requirement for reproducibility).

And for you Windows users, don’t think that the preceding para-
graph does not concern you. I think that it is very likely that
Microsoft will push in the future for OEM manufacturers to
build more ARM based computers. There is already an ARM
version of Windows after all, and it has been around for quite
some time, and I think that Microsoft will not kill that version
any time in the future. This is because ARM is much more
energy efficient than other architectures, and any manufacturer
can build its own ARM cpus by purchasing a license, which can
be quite interesting from a business perspective. For example in
the case of Apple Silicon cpus, Apple can now get exactly the
cpus they want for their machines and make their software work
seamlessly with it (also, further locking in their users to their
hardware). I doubt that others will pass the chance to do the
same.

Also, something else that might happen is that we might move
towards more and more cloud based computing, but I think that
this scenario is less likely than the one from before. But who
knows. And in that case it is quite likely that the actual code
will be running on Linux servers that will likely be ARM based
because of energy and licensing costs. Here again, if you want
to run your historical code, you’ll have to compile old packages
and R versions from source.

Ok, so this might seem all incredibly complicated. How on earth
are we supposed to manage all these risks and balance the im-
mediate need for results with the future need of rerunning an

23

1 Introduction

old project? And what if rerunning this old project is not even
needed in the future?

This is where this book will help you. By employing the tech-
niques discussed in this book, not only will it be very easy and
quick to set up a project from the ground up that is truly repro-
ducible, the very fact of building the project this way will also
ensure that you avoid mistakes and producing results that are
wrong. It will be easier and faster to iterate and improve your
code, to collaborate, and ultimately to trust the results of your
pipelines. So even if no one will rerun that code ever again, you
will still benefit from the best practices presented in this book.
Let’s dive in!

24

2 Setting up a development
environment

I have to start with one of the hardest chapters of the book,
which is how to set up a development environment for Python.

If you are already using Python, you are likely already famil-
iar with setting up per-project development environments using
tools like pyenv. I would still suggest you read this chapter and
see if you agree with how I approach this issue. You may want to
adapt your current workflow to it, or keep on doing what you’ve
been doing up until now, it is up to. If you’re completely new to
Python, then you definitely need to read this chapter, but also,
I need to remind you that this is not a book about Python per
se. So I won’t be teaching you any Python (I wouldn’t really
be competent to do so either) and you might want to comple-
ment reading this book with another that focuses on actually
teaching you Python. Remember, this book is about building
reproducible analytical pipelines!

2.1 Why is installing Python such a hard
problem?

If you google “how to install Python” you will find a surprising
amount of articles explaining how to do it. I say “surprising

25

2 Setting up a development environment

amount” because one might expect to install Python like any
other piece of software. If you’re already familiar with R, you
could think that installing Python would be done the same way:
download the installer for your operating system, and then in-
stall it. And, actually, you can do just that for Python as well.
So why are there 100s of articles online explaining how to install
Python, and why aren’t all of these articles simply telling you
to download the installer to install Python? Why did I write
this chapter on installing Python?

Well, there are several thing that we need to deal with if we
want to install and use Python the “right way”. First of all,
Python is pre-installed on Linux distributions and older versions
of macOS. So if you’re using one of these operating systems,
you could use the built-in Python interpreter, but this is not
recommended. The reason being that these bundled versions
are generally older, and that you don’t control their upgrade
process, as these get updated alongside the operating system.
On Windows and newer versions of macOS, Python is, as far as
I know, never bundled, so you’d need to install it anyways.

Another reason why you should install a Python version and
manage it yourself, is that newer Python versions can introduce
breaking changes, making code written for an earlier version of
Python not run on a newer version of Python. This is not a
Python-specific issue: it happens with any programming lan-
guage. So this means that ideally you would want to bundle a
Python version with your project’s code.

The same holds true for individual packages: newer versions of
packages might not even work with older releases of Python,
so to avoid any issues, an analysis would get bundled with a
Python release and Python packages. This bundle is what I call
a development environment, and in order to build such develop-
ment environments, specific tools have to be used. And there’s

26

2.2 Creating a project-specific development environment

a lot of these tools in the Python ecosystem… so much so that
when you’re first starting, you might get lost. So here are the
two tools that I use for this, and that I think work quite well
together: micromamba and pipenv.

The workflow is as follows:

• Install micromamba, a lightweight package manager.
• Using micromamba, create an environment that contains a

Python interpreter and the pipenv package.
• Using this environment, install the required packages us-

ing pipenv.
• pipenv will automatically generate two very useful files,

Pipfile and Pipfile.lock.

In the following sections I detail this process.

2.2 Creating a project-specific
development environment

What we want is to have project-specific development environ-
ments that should include a specific Python version, specific
versions of Python packages and all the code to actually run the
project. If you do this, you have already achieved a great deal to
make your analysis reproducible. Some would even argue that
it is enough!

I’m going to assume that you don’t have any Python version
available on your computer and need to get one. Let’s suppose
that Python version 3.12.1 is the latest released version, and
let’s also suppose that you would like to use that version to
start working on a project. To first get the right Python in-
terpreter ready, you should install micromamba. Please refer to

27

2 Setting up a development environment

the micromamba documentation here1 but on Linux, macOS and
Git Bash on Windows (there’s also instructions for Powershell,
if you don’t have Git Bash installed on Windows), it should be
as easy as running this in your terminal:

"${SHELL}" <(curl -L micro.mamba.pm/install.sh)

for Poweshell use instead Invoke-Expression ((Invoke-WebRequest
-Uri https://micro.mamba.pm/install.ps1).Content) in-
stead.

We can now use micromamba to create an environment that will
contain a Python interpreter for our project and pipenv. Type
the following command to create this environment:

micromamba create -n housing python=3.12.1 pipenv

This will create an environment named “pipenv_env” that in-
cludes pipenv and the version 3.12.1 of Python. If you’re just
starting a project, you can safely choose the very latest released
version (check the releases pages on Python’s website).

We can now use pipenv to install the packages for our project.
But why don’t we just use the more common pip instead of
pipenv, or even micromamba which can also install any other
Python package that we require for our projects? Why introduce
yet another tool? In my opinion, pipenv has one absolutely
crucial feature for reproducibility: pipenv enables deterministic
builds, which means that when using pipenv, we will always get
exactly the same packages installed.

1https://mamba.readthedocs.io/en/latest/installation/micromamba-
installation.html#automatic-install

28

https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html#automatic-install

2.2 Creating a project-specific development environment

“But isn’t that exctaly what using requirements.txt file does?”
you wonder. You are not entirely wrong. After all, if you make
the effort to specify the packages you need, and their versions,
wouldn’t running pip install -r requirements.txt also in-
stall exactly the same packages? (If you don’t know what a
requirements.txt file is, you can think of it as a simple text
file that lists the required packages and their versions for an
analysis).

Well, not quite. Imagine for example that you need a package
called hello and you put it into your requirements.txt like
so:

hello==1.0.1

Suppose that hello depends on another package called ciao. If
you run pip install -r requirements.txt today, you’ll get
hello at version 1.0.1 and ciao, say, at version 0.3.2. But if
you run pip install -r requirements.txt in 6 months, you
would still get hello at version 1.0.1 but you might get a newer
version of ciao. This is because ciao itself is not specified in
the requirements.txt, unless you made sure to add it (and
then also add its dependencies, and their dependencies…). This
mismatch in the versions of ciao can cause issues. pipenv takes
care of this for you by generating a so-called lock file automat-
ically, and adds further security checks by comparing sha256
hashes from the lock file to the ones from the downloaded pack-
ages, making sure that you are actually installing what you be-
lieve you are.

What about using micromamba? micromamba could indeed be
used to install the project’s dependencies, but would require
another tool called conda-lock to generate lock files, and in my

29

2 Setting up a development environment

experience, using conda-lock doesn’t always work. I have had
0 issues with pipenv on the other hand.

In any case, the point is that you should use a tool that specifies
dependencies very strictly and precisely. Use whatever you’re
comfortable with if you already are familiar with one such tool.
If not, and you want to follow along, use pipenv but take some
time to check out other options. I personally use Nix, which is
not specific to Python, but I decided not to discuss Nix in this
book, because to properly discuss it, it would require a book on
its own.

Now that pipenv is installed, let’s start using it to install the
packages we need for our project. Because the Python inter-
preter was installed using micromamba, we either need to activate
the environment to get access to it, or we should use micromamba
run to run the Python intpreter from this environment. First,
create a folder called housing, which will contain our analysis
scripts. Then, from that folder, run the following command:

micromamba run -n housing pipenv install
polars==1.1.0 plotnine beautifulsoup4 pandas
plotnine lxml pyarrow requests xlsx2csv

↪

↪

As you can see, I chose to install specific versions of polars.
This is because I want you to follow along with the same versions
as in the book. You could remove the ==x.y.z string from the
command above to install the latest versions of polars available
if you prefer, but then there would be no guarantee that you
would find the same results as I do in the remainder of the book.
You could also specify versions for the other packages if you
wish. A little sidnote: some of these packages we are not really
going to be using, but they’re needed either as dependencies for

30

2.2 Creating a project-specific development environment

polars or because we need one single function from them. The
packages in question are pandas, lxml and pyarrow.

You should now see two new files in the housing folder, Pipfile
and Pipfile.lock. Start by opening Pipfile, it should look
like this:

[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"

[packages]
polars = "==1.1.0"
plotnine = "*"
beautifulsoup4 = "*"
pandas = "*"
skimpy = "*"

[dev-packages]

[requires]
python_version = "3.12"

I think that this file is pretty self-evident: the packages being
used for this project are listed alongside their versions. The
Python version is also listed. Sometimes, depending on how
you set up the project, it could happen that the Python version
listed is not the one you want for your project. In this case,
I highly recommend you change the version to the right one.
Also, you’ll notice that here the Python version is “3.12”, but
we specified version “3.12.1” with micromamba when we created
the environment. I would recommend that you add the missing
“.1” for maximum reproducibility. If you edited the Pipfile then

31

2 Setting up a development environment

you need to run pipenv lock to regenerate the Pipfile.lock
file as well:

micromamba run -n housing pipenv lock

this will make sure to also set the required/correct Python ver-
sion in there.

If you open the Pipfile.lock in a text editor, you will see that
it is a json file and that also lists the dependecies of your project,
but also the dependencies’ dependencies. You will also notice
several fields called hashes. These are there for security reasons:
whenever someone, (or you in the future) will regenerate this
environment, the packages will get downloaded and their hashes
will get compared to the ones listed in the Pipfile.lock. If
they don’t match, then something very wrong is happening and
packages won’t get installed. These two files are very important,
because they will make sure that it will be possible to regenerate
the same environment on another machine.

To check whether everything installed correctly, drop into the
development shell using:

micromamba run -r housing pipenv shell

and check that the right version of Python is being used:

python --version

This should print Python 3.12.1 in the terminal. Start the
Python interpreter and let’s check polars’s version:

32

2.3 One last thing

python

Then check that the correct versions of the packages were in-
stalled:

import polars as pl
pl.__version__

'1.12.0'

You should see 1.1.0 as the listed version. Quit the shell, and
then quit the environment with exit.

2.3 One last thing

Before continuing, it would be nice if we would automatically
drop into the environment each time we are in the right folder;
so for example, each time we navigate to the housing folder for
our project on housing, the housing environment starts. We
can achieve this by using a tool called direnv.

I won’t go into details to install direnv, simply consult the
documentation.

The next step is to start a shell in your environment by running
micromamba run -n housing pipenv shell. This will start
a shell inside the housing environment by executing pipenv
shell. Take note of the command that appears, in my case it’s
this: . /home/b-rodrigues/.local/share/virtualenvs/py_housing-MvX0wC5I/bin/activate
(pay attention to the . character at the very beginning of this
command!).

33

https://direnv.net/docs/installation.html

2 Setting up a development environment

In the root folder of the housing project, create an empty text
file and name it .envrc. Inside of that file, paste the line from
before into the empty .envrc file. Finally, run direnv allow
in a terminal in that folder, and each time you will navigate to
this folder using a terminal, that development environment will
be used. Many development interfaces can work together with
direnv, refer to their documentation to learn how to configure
your IDE to make use of direnv.

2.4 A high-level description of how to
set up a project

Ok, so to summarise, we installed micromamba which will make
it easy to install any version of Python that we require, and we
also installed pipenv, which we use to install packages. The
advantage of using pipenv is that we get deterministic builds,
and pipenv works well with micromamba to build project-specific
environments.

The way I would suggest you use these tools now, is that for
each project, you install the latest available version of Python
and then install packages by specyifing their versions, like so:

micromamba create -n project_name python=X.YY.Z
pipenv↪

then, use this environment in a fresh folder to install the pack-
ages you need, for instance:

micromamba run -n housing pipenv install
beautifulsoup4==4.12.2 polars==1.1.0
plotnine==0.12.4

34

2.4 A high-level description of how to set up a project

(Replace the versions of Python and packages by the latest, or
those you need.)

This will ensure that your project uses the correct software stack,
and that collaborators or future you will be able to regenerate
this environment by calling pipenv sync. This is also the com-
mand that we will use later, in the chapter on CI/CD.

If you need to add packages to an environment, run: micromamba
run -n housing pipenv install great_tables (or simply if
pipenv install great_tables if you’re already in the acti-
vated housing environment).

35

3 Project start

In this chapter, we are going to work together on a very simple
project. This project will stay with us until the end of the book.
As we will go deeper into the book together, you will rewrite that
project by implementing the techniques I will teach you. By the
end of the book you will have built a reproducible analytical
pipeline. To get things going, we are going to keep it simple;
our goal here is to get an analysis done, that’s it. We won’t
focus on reproducibility (well, not beyond what was done in the
previous chapter to set up our development environment). We
are going to download some data, and analyse it, that’s it.

3.1 Housing in Luxembourg

We are going to download data about house prices in Luxem-
bourg. Luxembourg is a little Western European country the
author hails from that looks like a shoe and is about the size
of .98 Rhode Islands. Did you know that Luxembourg is a con-
stitutional monarchy, and not a kingdom like Belgium, but a
Grand-Duchy, and actually the last Grand-Duchy in the World?
Also, what you should know to understand what we will be do-
ing is that the country of Luxembourg is divided into Cantons,
and each Cantons into Communes. If Luxembourg was the USA,
Cantons would be States and Communes would be Counties (or
Parishes or Boroughs). What’s confusing is that “Luxembourg”

37

3 Project start

is also the name of a Canton, and of a Commune, which also has
the status of a city and is the capital of the country. So Lux-
embourg the country, is divided into Cantons, one of which is
called Luxembourg as well, cantons are divided into communes,
and inside the canton of Luxembourg, there’s the commune of
Luxembourg which is also the city of Luxembourg, sometimes
called Luxembourg City, which is the capital of the country.

Figure 3.1: Luxembourg is about as big as the US State of Rhode
Island.

What you should also know is that the population is about
672’050 people as of writing (July 2024), half of which are for-
eigners. Around 400’000 persons work in Luxembourg, of which
half do not live in Luxembourg; so every morning from Monday
to Friday, 200’000 people enter the country to work and then
leave in the evening to go back to either Belgium, France or
Germany, the neighbouring countries. As you can imagine, this
puts enormous pressure on the transportation system and on the

38

3.1 Housing in Luxembourg

roads, but also on the housing market; everyone wants to live in
Luxembourg to avoid the horrible daily commute, and everyone
wants to live either in the capital city, or in the second largest
urban area in the south, in a city called Esch-sur-Alzette.

The plot below shows the value of the House Price Index (HPI)
over time for Luxembourg and the European Union:

90

120

150

180

210

2010 2015 2020
TIME_PERIOD

O
B

S
_V

A
LU

E

geo EU LU

House price and sales index (2010 = 100)

Source: Eurostat

If you want to download the data and follow along, click here1.

Let us take a look at the definition of the HPI (taken from the
HPI’s metadata2 page):

The House Price Index (HPI) measures inflation in the residen-
tial property market. The HPI captures price changes of all types
of dwellings purchased by households (flats, detached houses, ter-
raced houses, etc.). Only transacted dwellings are considered,

1https://is.gd/AET0ir
2https://archive.is/OrQwA, archived link for posterity.

39

https://github.com/b-rodrigues/rap4all/raw/master/datasets/prc_hpi_a__custom_4705395_page_linear.csv.gz
https://archive.is/OrQwA

3 Project start

self-build dwellings are excluded. The land component of the
dwelling is included.

So from the plot, we can see that the price of dwellings more
than doubled between 2010 and 2021; the value of the index is
214.81 in 2021 for Luxembourg, and 138.92 for the European
Union as a whole.

There is a lot of heterogeneity though; the capital and the com-
munes right next to the capital are much more expensive than
communes from the less densely populated north, for example.
The south of the country is also more expensive than the north,
but not as much as the capital and surrounding communes. Not
only is price driven by demand, but also by scarcity; in 2021,
0.5% of residents owned 50% of the buildable land for housing
purposes (Source: Observatoire de l’Habitat, Note 29, archived
download link3).

Our project will be quite simple; we are going to download some
data, supplied as an Excel file, compiled by the Housing Obser-
vatory (Observatoire de l’Habitat, a service from the Ministry
of Housing, which monitors the evolution of prices in the hous-
ing market, among other useful services like the identification
of vacant lots). The advantage of their data when compared to
Eurostat’s data is that the data is disaggregated by commune.
The disadvantage is that they only supply nominal prices, and
no index (and the data is trapped inside Excel and not ready for
analysis with Python). Nominal prices are the prices that you
read on price tags in shops. The problem with nominal prices is
that it is difficult to compare them through time. Ask yourself
the following question: would you prefer to have had 500€ (or
USDs) in 2003 or in 2023? You probably would have preferred
them in 2003, as you could purchase a lot more with $500 then

3https://archive.org/download/note-29/note-29.pdf

40

https://archive.org/download/note-29/note-29.pdf
https://archive.org/download/note-29/note-29.pdf

3.1 Housing in Luxembourg

than now. In fact, according to a random inflation calculator I
googled, to match the purchasing power of $500 in 2003, you’d
need to have $793 in 2023 (and I’d say that we find very similar
values for €). But it doesn’t really matter if that calculation is
100% correct: what matters is that the value of money changes,
and comparisons through time are difficult, hence why an index
is quite useful. So we are going to convert these nominal prices
to real prices. Real prices take inflation into account and so
allow us to compare prices through time.

So to summarise; our goal is to:

• Get data trapped inside an Excel file into a neat data
frame;

• Convert nominal to real prices using a simple method;
• Make some tables and plots and call it a day (for now).

We are going to start in the most basic way possible; we are sim-
ply going to write a script and deal with each step separately.

41

3 Project start

3.2 Saving trapped data from Excel

Getting data from Excel into a tidy data frame can be very
tricky. This is because very often, Excel is used as some kind
of dashboard or presentation tool. So data is made human-
readable, in contrast to machine-readable. Let us quickly dis-
cuss this topic as it is essential to grasp the difference between
the two (and in my experience, a lot of collective pain inflicted
to statisticians and researchers could have been avoided if this
concept was more well-known). The picture below shows an
Excel file made for human consumption:

Figure 3.2: An Excel file meant for human eyes.

So why is this file not machine-readable? Here are some issues:

• The table does not start in the top-left corner of the spread-
sheet, which is where most importing tools expect it to be;

• The spreadsheet starts with a header that contains an im-
age and some text;

42

3.2 Saving trapped data from Excel

• Numbers are actually text and use “,” as the thousands
separator;

• You don’t see it in the screenshot, but each year is in a
separate sheet.

That being said, this Excel file is still very tame, and going
from this Excel to a tidy data frame will not be too difficult.
In fact, we suspect that whoever made this Excel file is well
aware of the contradicting requirements of human and machine-
readable formatting of data, and strove to find a compromise.
Because more often than not, getting human-readable data into
a machine-readable format is a nightmare. We could call data
like this machine-friendly data.

If you want to follow along, you can download the Excel file here4

(downloaded on January 2023 from the luxembourguish open
data portal5). But you don’t need to follow along with code,
because I will link the completed scripts for you to download
later.

Each sheet contains a dataset with the following columns:

• Commune: the commune (the smallest administrative di-
vision of territory);

• Nombre d’offres: the total number of selling offers;
• Prix moyen annoncé en Euros courants: Average selling

price in nominal Euros;
• Prix moyen annoncé au m2 en Euros courants: Average

selling price in square meters in nominal Euros.

For ease of presentation, I’m going to show you each step of the
analysis here separately, but I’ll be putting everything together

4https://is.gd/1vvBAc
5https://data.public.lu/en/datasets/prix-annonces-des-logements-par-

commune/

43

https://github.com/b-rodrigues/rap4all/raw/master/datasets/vente-maison-2010-2021.xlsx
https://data.public.lu/en/datasets/prix-annonces-des-logements-par-commune/
https://data.public.lu/en/datasets/prix-annonces-des-logements-par-commune/

3 Project start

in a single script once I’m done explaining each step. So first,
let’s import the main packages I’ll be using for the analysis (I’ll
need to import some others as I go):

import polars as pl
import polars.selectors as cs
import re

I will be using the polars package to manipulate data and
polars.selectors contains handy functions to refer to columns
while re is for regular expressions which I will need below.

Next, the code below downloads the data, and puts it in a data
frame:

The url below points to an Excel file
hosted on the book's github repository
url = "https://is.gd/1vvBAc"

Let's first download the file into a temporary
file and then↪

return its path
from tempfile import NamedTemporaryFile
from requests import get

response = get(url)

with NamedTemporaryFile(delete = False, suffix =
'.xlsx') as temp_file:↪

temp_file.write(response.content)
temp_file_path = temp_file.name

220016

44

3.2 Saving trapped data from Excel

The code above downloads the Excel file, saves it in a tempo-
rary folder and returns the path to the file. We can now use
temp_file_path to read the data using pl.read_excel().

Next, I will write a function to read all the sheets of the Excel
workbook. Ideally, this wouldn’t be needed, because polars
can read all the sheets of an Excel workbook in one go and
return a list of sheets, but I want to add a column with the
year. So I write this function that reads one sheet and adds the
year column, and then I map this function over a list of sheet
names:

def read_excel(excel_file, sheet):
out = pl.read_excel(

engine = 'xlsx2csv',
source = excel_file,
sheet_name = sheet,
schema_overrides = {"Nombre d'offres":

pl.String},↪

read_options = {
"skip_rows": 6,
"has_header": True
}

).with_columns(pl.lit(sheet).alias("year"))↪

return out

I set some options in the pl.read_excel() function to correctly
read the file. I’ll let you play around with these options to see
what happens if you don’t set them.

I now need a little helper function that I will use to map over
the sheet names. This function sets the excel_file argument
of the previously defined read_excel() function we wrote to

45

3 Project start

temp_file_path which points to the Excel file. I will then map
over its sheet argument.

def wrap_read_excel(sheet):
out = read_excel(excel_file = temp_file_path,

sheet = sheet)
return out

Let’s now create the list of sheet names:

sheets = list(map(str, range(2010, 2022)))

I can now map the function over the list of sheets and concate-
nate them into a single polars data frame using pl.concat():

raw_data = pl.concat(list(map(wrap_read_excel,
sheets)))↪

In the preface, I mentioned that the Python code in this book
would have a very distinct R-like accent. Mapping over a list
instead of writing a for-loop is an example of this. Feel free to
use a for-loop if you’re more comfortable with them!

The next function will be used below to clean the column
names. For example, a column called something like "House
prices in €" would get changed to "house_prices_in_",
removing the "€" sign, replacing spaces with "_" setting the
string to lower case. If I was using pandas, I could have used
clean_columns() from the skimpy package, but unfortunately
this function doesn’t work with polars data frames. So I wrote
this little function to clean the column names instead, partly
inspired by the clean_names() function from the {janitor} R
package.

46

3.2 Saving trapped data from Excel

def clean_names(string):
inspired by

https://nadeauinnovations.com/post/2020/11/python-tricks-replace-all-non-alphanumeric-characters-in-a-string/↪

clean_string = [s for s in string if s.isalnum()
or s.isspace()]↪

out = "".join(clean_string).lower()
out = re.sub(r"\s+", "_", out)
out = out.encode("ascii",
"ignore").decode("utf-8")↪

return out

We need to map clean_names() to each column. We can select
all the columns using pl.all() and map the function to the
column’s name attribute.

raw_data =
raw_data.select(pl.all().name.map(clean_names))↪

Finally, let’s rename some columns and do some more clean-
ing: - converting column types - ensuring consistent names for
the communes (for example, sometimes the commune of Luxem-
bourg is spelled “Luxembourg”, sometimes “Luxembourg-Ville”
- converting columns to their right types (but not the n_offers
column yet…)

This is all done in the snippet below:

raw_data = (
raw_data
.rename(
{

"commune": "locality",

47

3 Project start

"nombre_doffres": "n_offers",
"prix_moyen_annonc_en_courant":

"average_price_nominal_euros",↪

"prix_moyen_annonc_au_m_en_courant":
"average_price_m2_nominal_euros"↪

}
)
.with_columns(
cs.all().str.strip_chars()

)
.with_columns(
cs.contains("average").cast(pl.Float64, strict

= False)↪

)
.with_columns(
In some sheets it's "Luxembourg", in others

it's "Luxembourg-Ville"↪

pl.col("locality").str.replace_all("Luxembourg.*",
"Luxembourg")

↪

↪

)
.with_columns(
In some sheets it's "Pétange", in others

it's "Petange"↪

pl.col("locality").str.replace_all("P.*tange",
"Pétange")↪

)
)

In practice, it is unlikely that you would have written the above
code in one go. Instead you would have checked the data, done
something on it, then checked it again, etc. But as I mentioned

48

3.2 Saving trapped data from Excel

this is not a book about learning how to clean data, so let’s just
take this code as-is.

If you are familiar with the {tidyverse} (Wickham et al. 2019)
family of packages from the R programming language, the above
code should be quite relatively easy to follow. If you are more fa-
miliar with pandas, I believe that reading the code above should
still be easy as well. What might be more difficult if you were
brought up on Python exclusively is mapping functions to ele-
ments of lists instead of using for-loops. Don’t worry about it
too much, and use for-loops if you wish. Just remember that
this book is not about Python per se, but about building repro-
ducible pipelines. The focus will be on other things.

Running this code results in a tidy data set:

raw_data

shape: (1_313, 5)
��
� locality � n_offers �
average_price_nominal_euro �
average_price_m2_nominal_ � year �
� --- � --- � s
� euros � --- �
� str � str � ---
� --- � str �
� � � f64
� f64 � �
��
� Bascharage � 192 � 593698.31
� 3603.57 � 2010 �
� Beaufort � 266 � 461160.29
� 2902.76 � 2010 �

49

3 Project start

� Bech � 65 � 621760.22
� 3280.51 � 2010 �
� Beckerich � 176 � 444498.68
� 2867.88 � 2010 �
� Berdorf � 111 � 504040.85
� 3055.99 � 2010 �
� … � … � …
� … � … �
� Winseler � 41 � 979696.17
� 3921.98 � 2021 �
� Wormeldange � 50 � 1052340.8
� 6391.339 � 2021 �
� Moyenne nationale � null � 1317473.9
� 6743.722 � 2021 �
� Total d'offres � 11925 � null
� null � 2021 �
� Source : Ministère du � null � null
� null � 2021 �
� Logement… � �
� � �
��

But as you can see at the bottom, we still have some stuff
that doesn’t belong in the locality column. Let’s also check
for missing values in the "average_price_nominal_euros" col-
umn:

(
raw_data

.filter(pl.col("average_price_nominal_euros").is_null())↪

)

shape: (186, 5)

50

3.2 Saving trapped data from Excel

��
� locality � n_offers �
average_price_nominal_euro �
average_price_m2_nominal_ � year �
� --- � --- � s
� euros � --- �
� str � str � ---
� --- � str �
� � � f64
� f64 � �
��
� Consthum � 29 � null
� null � 2010 �
� Esch-sur-Sûre � 7 � null
� null � 2010 �
� Heiderscheid � 29 � null
� null � 2010 �
� Hoscheid � 26 � null
� null � 2010 �
� Saeul � 14 � null
� null � 2010 �
� … � … � …
� … � … �
� Waldbredimus � 25 � null
� null � 2021 �
� Weiler-la-Tour � 28 � null
� null � 2021 �
� Weiswampach � 28 � null
� null � 2021 �
� Total d'offres � 11925 � null
� null � 2021 �
� Source : Ministère du � null � null
� null � 2021 �

51

3 Project start

� Logement… � �
� � �
��

It turns out that there are no prices for certain communes, but
that we also have some rows with garbage in there. Let’s go
back to the raw data to see what this is about:

Figure 3.3: Always look at your data.

So it turns out that there are some rows that we need to re-
move. We can start by removing rows where locality is miss-
ing. Then we have a row where locality is equal to “Total
d’offres”. This is simply the total of every offer from every com-
mune. We could keep that in a separate data frame, or even
remove it. The very last row states the source of the data and
we can also remove it. Finally, in the screenshot above, we
see another row that we don’t see in our filtered data frame:
one where n_offers would be missing. This row gives the
national average for columns average_prince_nominal_euros
and average_price_m2_nominal_euros. What we are going to
do is create two datasets: one with data on communes, and the
other on national prices. Let’s first remove the rows stating the
sources:

52

3.2 Saving trapped data from Excel

raw_data = (
raw_data

.filter(~pl.col("locality").str.contains("Source"))↪

)

Let’s now only keep the communes in our data:

commune_level_data = (
raw_data

.filter(~pl.col("locality").str.contains("nationale|offres"))↪

.filter(pl.col("locality").is_not_null())
This is needed on Windows...
.with_columns(

pl.col("locality").str.replace_all("\351",
"é")↪

)
.with_columns(

pl.col("locality").str.replace_all("\373",
"û")↪

)
.with_columns(

pl.col("locality").str.replace_all("\344",
"ä")↪

)
)

And let’s create a dataset with the national data as well:

53

3 Project start

country_level = (
raw_data

.filter(pl.col("locality").str.contains("nationale"))↪

.select(cs.exclude("n_offers"))
)

offers_country = (
raw_data
.filter(pl.col("locality").str.contains("Total
d.offres"))↪

.select(["year", "n_offers"])
)

country_level_data = (
country_level.join(offers_country, on = "year")
.with_columns(pl.lit("Grand-Duchy of
Luxembourg").alias("locality"))↪

)

Let’s take a look at it:

country_level_data

shape: (12, 5)
��
� locality � average_price_nominal_euros �
average_price_m2_nominal_euro � year � n_offers �
� --- � --- � s
� --- � --- �
� str � f64 �
--- � str � str �

54

3.2 Saving trapped data from Excel

� � �
f64 � � �
��
� Grand-Duchy of � 569216.0 �
3251.0 � 2010 � 19278 �
� Luxembourg � �
� � �
� Grand-Duchy of � 597784.711711 �
3375.088978 � 2011 � 21253 �
� Luxembourg � �
� � �
� Grand-Duchy of � 596347.972382 �
3408.711732 � 2012 � 14773 �
� Luxembourg � �
� � �
� Grand-Duchy of � 644884.979694 �
3589.790108 � 2013 � 13298 �
� Luxembourg � �
� � �
� Grand-Duchy of � 663639.733049 �
3647.123608 � 2014 � 9852 �
� Luxembourg � �
� � �
� … � … � …
� … � … �
� Grand-Duchy of � 812919.0678 �
4274.039466 � 2017 � 16055 �
� Luxembourg � �
� � �
� Grand-Duchy of � 874685.96 �
4562.288 � 2018 � 13534 �
� Luxembourg � �
� � �

55

3 Project start

� Grand-Duchy of � 970589.13 �
5038.614 � 2019 � 12171 �
� Luxembourg � �
� � �
� Grand-Duchy of � 1180466.6 �
6364.361 � 2020 � 11757 �
� Luxembourg � �
� � �
� Grand-Duchy of � 1317473.9 �
6743.722 � 2021 � 11925 �
� Luxembourg � �
� � �
��

Now the data looks clean, and we can start the actual analysis…
or can we? Before proceeding, it would be nice to make sure
that we got every commune in there. For this, we need a list of
communes from Luxembourg. Thankfully, Wikipedia has such
a list6.

An issue with scraping tables off the web is that they might
change in the future. It is therefore a good idea to save the
page by right clicking on it and then selecting save as, and then
re-hosting it. I use Github pages to re-host the Wikipedia page
above here7. I now have full control of this page, and won’t
get any bad surprises if someone decides to eventually update it.
Instead of re-hosting it, you could simply save it as any other
file of your project.

So let’s scrape and save this list. Let’s first load the required
packages:

6https://w.wiki/6nPu
7https://is.gd/lux_communes

56

https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://en.wikipedia.org/wiki/List_of_communes_of_Luxembourg
https://b-rodrigues.github.io/list_communes/

3.2 Saving trapped data from Excel

from urllib.request import urlopen
from bs4 import BeautifulSoup
from pandas import read_html
from io import StringIO

and let’s get the raw data:

url = 'https://b-rodrigues.github.io/list_communes/'

html = urlopen(url)

tables = (
BeautifulSoup(html, 'html.parser')
.find_all("table")

)

current_communes_raw =
read_html(StringIO(str(tables[1])))[0]↪

I won’t go into much details, but the using Beautifoulsoup()
it is possible to parse the html from the web page and get
the tables out using the .find_all() method. The first ta-
ble from that list is the one we’re interested in, and using the
read_html() function from the pandas package we can get that
table into a data frame (turns out we can’t completely avoid
using pandas!).

We can now use polars to clean the table:

current_communes has a MultiIndex, so drop it
current_communes_raw.columns =

current_communes_raw.columns.droplevel()↪

57

3 Project start

current_communes_pl = (
pl.DataFrame(current_communes_raw)
.select(pl.col("Name.1").alias("commune"))
.with_columns(

pl.col("commune").str.replace_all("\351",
"é")↪

)
.with_columns(

pl.col("commune").str.replace_all("\373",
"û")↪

)
.with_columns(

pl.col("commune").str.replace_all("\344",
"ä")↪

)
.with_columns(
This removes the dagger symbol next to certain

communes names↪

in other words it turns "Commune †" into
"Commune".↪

pl.col("commune").str.replace_all(" .$", "")
)

)

Finally, we can save the communes into a simple list:

current_communes =
list(current_communes_pl["commune"])↪

Let’s see if we have all the communes in our data, if the code
below results in an empty list, then we’re good:

58

3.2 Saving trapped data from Excel

(
commune_level_data

.filter(~pl.col("locality").is_in(current_communes))↪

.get_column("locality")

.unique()

.sort()

.to_list()
)

['Bascharage', 'Boevange-sur-Attert', 'Burmerange',
'Clémency', 'Commune', 'Consthum', 'Ermsdorf',
'Erpeldange', 'Eschweiler', 'Heiderscheid',
'Heinerscheid', 'Hobscheid', 'Hoscheid', 'Hosingen',
'Kaerjeng', 'Luxembourg', 'Medernach', 'Mompach',
'Munshausen', 'Neunhausen', 'Rosport',
'Septfontaines', 'Tuntange', 'Wellenstein']

We see many communes that are in our commune_level_data,
but not in current_communes. There’s one obvious reason: dif-
ferences in spelling, for example, “Kaerjeng” in our data, but
“Käerjeng” in the table from Wikipedia. But there’s also a less
obvious reason; since 2010, several communes have merged into
new ones. So there are communes that are in our data in 2010
and 2011, but disappear from 2012 onwards. So we need to do
several things: first, get a list of all existing communes from
2010 onwards, and then, harmonise spelling. Here again, we can
use a list from Wikipedia, and here again, I decide to re-host it
on Github pages to avoid problems in the future:

Need to also check former communes
url =

'https://b-rodrigues.github.io/former_communes/#Former_communes/'↪

59

3 Project start

html = urlopen(url)

tables = (
BeautifulSoup(html, 'html.parser')
.find_all("table")

)

The third table (...hence the '2' in tables[2]...)
is the one we need↪

former_communes_raw =
read_html(StringIO(str(tables[2])))[0]↪

former_communes_pl = (
pl.DataFrame(former_communes_raw)
.with_columns(

pl.col("Name").str.replace_all("\351", "é")
)
.with_columns(

pl.col("Name").str.replace_all("\373", "û")
)
.with_columns(

pl.col("Name").str.replace_all("\344", "ä")
)
.select(pl.col("Name").alias("commune"))

)

former_communes_pl

shape: (40, 1)
�����������������
� commune �
� --- �

60

3.2 Saving trapped data from Excel

� str �
�����������������
� Arsdorf �
� Asselborn �
� Bascharage �
� Bastendorf �
� Bigonville �
� … �
� Rosport �
� Septfontaines �
� Tuntange �
� Wellenstein �
� Wilwerwiltz �
�����������������

As you can see, since 2010 many communes have merged to form
new ones. We can now combine the list of current and former
communes:

Combine former and current communes

communes = (
pl.concat([former_communes_pl,
current_communes_pl])↪

.get_column("commune")

.unique()

.sort()

.to_list()
)

(
commune_level_data

.filter(~pl.col("locality").is_in(communes))

61

3 Project start

.get_column("locality")

.unique()

.sort()

.to_list()
)

['Clémency', 'Commune', 'Erpeldange', 'Kaerjeng',
'Luxembourg']

And now we can harmonize the spelling:

There's certain communes with different spelling
between↪

wikipedia and our data, so let's correct the
spelling↪

on the wikipedia ones
['Clémency', 'Erpeldange', 'Kaerjeng',

'Luxembourg', 'Pétange']↪

communes_clean = (
pl.concat([former_communes_pl,
current_communes_pl])↪

.with_columns(

pl.when(pl.col("commune").str.contains("Cl.mency"))↪

.then(pl.lit("Clémency"))

.otherwise(pl.col("commune")).alias("commune")↪

)
.with_columns(

pl.when(pl.col("commune").str.contains("Erpeldange"))↪

.then(pl.lit("Erpeldange"))

62

3.2 Saving trapped data from Excel

.otherwise(pl.col("commune")).alias("commune")↪

)
.with_columns(

pl.when(pl.col("commune").str.contains("City"))↪

.then(pl.lit("Luxembourg"))

.otherwise(pl.col("commune")).alias("commune")↪

)
.with_columns(

pl.when(pl.col("commune").str.contains("K.*jeng"))↪

.then(pl.lit("Kaerjeng"))

.otherwise(pl.col("commune")).alias("commune")↪

)
.with_columns(

pl.when(pl.col("commune").str.contains("P.*tange"))↪

.then(pl.lit("Pétange"))

.otherwise(pl.col("commune")).alias("commune")↪

)
.get_column("commune")
.unique()
.sort()
.to_list()

)

Let’s run our test again:

63

3 Project start

(
commune_level_data

.filter(~pl.col("locality").is_in(communes_clean))↪

.get_column("locality")

.unique()

.sort()

.to_list()
)

['Commune']

Great! When we compare the communes that are in our data
with every commune that has existed since 2010, we don’t have
any commune that is unaccounted for. So are we done with
cleaning the data? Yes, we can now start with analysing the
data. Take a look here8 to see the finalised script. Also read
some of the comments that I’ve added. This is a typical Python
script, and at first glance, one might wonder what is wrong with
it. Actually, not much, but the problem if you leave this script as
it is, is that it is very likely that we will have problems rerunning
it in the future. As it turns out, this script is not reproducible.
But we will discuss this in much more detail later on. For now,
let’s analyse our cleaned data.

3.3 Analysing the data

We are now going to analyse the data. The first thing we are
going to do is compute a Laspeyeres price index. This price

8https://is.gd/bGvNKG

64

https://raw.githubusercontent.com/b-rodrigues/raps_with_py/master/scripts/save_data.py

3.3 Analysing the data

index allows us to make comparisons through time; for exam-
ple, the index at year 2012 measures how much more expensive
(or cheaper) housing became relative to the base year (2010).
However, since we only have one ‘good’ (housing), this index
becomes quite simple to compute: it is nothing but the prices at
year t divided by the prices in 2010 (if we had a basket of goods,
we would need to use the Laspeyeres index formula to compute
the index at all periods).

For this section, I will perform a rather simple analysis. I will
immediately show you the script: take a look at it here9. For
the analysis I selected 5 communes and plotted the evolution of
prices compared to the national average.

This analysis might seem trivially simple, but it contains all the
needed ingredients to illustrate everything else that I’m going
to teach you in this book.

Most analyses would stop here: after all, we have what we need;
our goal was to get the plots for the 5 communes of Luxembourg,
Esch-sur-Alzette, Mamer, Schengen (which gave its name to the
Schengen Area10) and Wincrange. However, let’s ask ourselves
the following important questions:

• How easy would it be for someone else to rerun the analy-
sis?

• How easy would it be to update the analysis once new data
gets published?

• How easy would it be to reuse this code for other projects?
• What guarantee do we have that if the scripts get run in 5

years, with the same input data, we get the same output?

Let’s answer these questions one by one.
9https://is.gd/7MqLjX

10https://en.wikipedia.org/wiki/Schengen_Area

65

https://raw.githubusercontent.com/b-rodrigues/raps_with_py/master/scripts/analysis.py
https://en.wikipedia.org/wiki/Schengen_Area

3 Project start

3.4 Your project is not done

3.4.1 How easy would it be for someone else to
rerun the analysis?

The analysis is composed of two Python scripts, one to prepare
the data, and another to actually run the analysis proper. Per-
forming the analysis might seem quite easy, because each script
contains comments as to what is going on, and the code is not
that complicated. However, we are missing any project-level
documentation that would provide clear instructions as to how
to run the analysis. This might seem simple for us who wrote
these scripts, but we are familiar with Python, and this is still
fresh in our brains. Should someone less familiar with Python
have to run the script, there is no clue for them as to how they
should do it. And of course, should the analysis be more com-
plex (suppose it’s composed of dozens of scripts), this gets even
worse. It might not even be easy for you to remember how to
run this in 5 months!

And what about the required dependencies? Many packages
were used in the analysis. How should these get installed?
Ideally, the same versions of the packages you used and the
same version of Python should get used by that person to rerun
the analysis. Thankfully, you can share the Pipfile and the
Pipfile.lock files from the previous chapters to make it easier
for them, so by setting up our development environment, we
also made it easier for future you or replicators to install the
required dependencies!

66

3.4 Your project is not done

3.4.2 How easy would it be to update the
project?

If new data gets published, all the points discussed previously
are still valid, plus you need to make sure that the updated data
is still close enough to the previous data such that it can pass
through the data cleaning steps you wrote. You should also
make sure that the update did not introduce a mistake in past
data, or at least alert you if that is the case. Sometimes, when
new years get added, data for previous years also get corrected,
so it would be nice to make sure that you know this. Also, in
the specific case of our data, communes might get fused into a
new one, or maybe even divided into smaller communes (even
though this has not happened in a long time, it is not entirely
out of the question).

In summary, what is missing from the current project are enough
tests to make sure that an update to the data can happen
smoothly.

3.4.3 How easy would it be to reuse this code
for another project?

Said plainly, not very easy. With code in this state you have
no choice but to copy and paste it into a new script and change
it adequately. For re-usability, nothing beats structuring your
code into functions and ideally you would even package them.
We are going to learn just that in future chapters of this book.

But sometimes you might not be interested in reusing code for
another project: however, even if that’s the case, structuring
your code into functions and packaging them makes it easy to
reuse code even inside the same project. Look at the last part of

67

3 Project start

the analysis.py script: we copied and pasted the same code 5
times and only slightly changed it. We are going to learn how not
to repeat ourselves by using functions and you will immediately
see the benefits of writing functions, even when simply reusing
them inside the same project.

3.4.4 What guarantee do we have that the
output is stable through time?

Now this might seem weird: after all, if we start from the same
dataset, does it matter when we run the scripts? We should
be getting the same result if we build the project today, in 5
months or in 5 years. Well, not necessarily. Programming lan-
guages such as Python evolve quickly, and packages even more
so. There is no guarantee that the authors of the packages will
not change the package’s functions to work differently, or take
arguments in a different order, or even that the packages will all
be available at all in 5 years. And even if the packages are still
available and function the same, bugs in the packages might get
corrected which could alter the result. This might seem like a
non-problem; after all, if bugs get corrected, shouldn’t you be
happy to update your results as well? But this depends on what
it is we’re talking about. Sometimes it is necessary to repro-
duce results exactly as they were, even if they were wrong, for
example in the context of an audit.

So we also need a way to somehow snapshot and freeze the
computational environment that was used to create the project
originally.

68

3.5 Conclusion

3.5 Conclusion

We now have a basic analysis that has all we need to get started.
In the coming chapters, we are going to learn about topics that
will make it easy to write code that is more robust, better doc-
umented and tested, and most importantly easy to rerun (and
thus to reproduce the results). The first step will actually not
involve having to start rewriting our scripts though; next, we
are going to learn about Git, a tool that will make our life easier
by versioning our code.

69

References

Peng, Roger D. 2011. “Reproducible Research in Computational
Science.” Science 334 (6060): 1226–27.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston
Chang, Lucy D’Agostino McGowan, Romain François, Gar-
rett Grolemund, et al. 2019. “Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686.

71

	Welcome!
	How using a few ideas from software engineering can help data scientists, analysts and researchers write reliable code

	Preface
	Introduction
	Who is this book for?
	What is the aim of this book?
	Prerequisites
	What actually is reproducibility?
	Using open-source tools to build a RAP is a hard requirement
	There are hidden dependencies that can hinder the reproducibility of a project
	The requirements of a RAP

	Are there different types of reproducibility?

	Setting up a development environment
	Why is installing Python such a hard problem?
	Creating a project-specific development environment
	One last thing
	A high-level description of how to set up a project

	Project start
	Housing in Luxembourg
	Saving trapped data from Excel
	Analysing the data
	Your project is not done
	How easy would it be for someone else to rerun the analysis?
	How easy would it be to update the project?
	How easy would it be to reuse this code for another project?
	What guarantee do we have that the output is stable through time?

	Conclusion

	References

